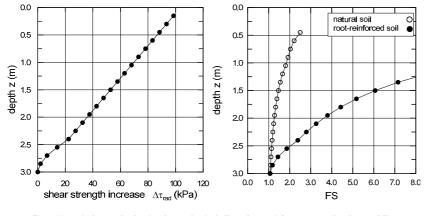


Surface protection of slopes by grass covering techniques

Tiziana Verrascina¹

¹Prati Armati S.r.I., Opera (MI), Italy email: info@pratiarmati.it



The role of vegetation in protecting slopes from erosion

- The role of vegetation in protecting slopes from erosion has long been studied and documented by experiments. Over the years several techniques have been developed for soil protection and renaturalization. Among them, an innovative technology uses only natural perennial grass plants with deep roots and allows operating in areas where climatic conditions were until a few years ago considered prohibitive for the development of vegetation. The application field of this technology is quite broad in many regions in Italy: embankments and ridges of roads and railways, quarries, mines, landfills and facing-sea areas, banks protection of rivers, torrents and artificial canals. The installation of deep rooting grassy plants to contrast water erosion on sloping ground looks promising for the following reasons:
- vegetation dissipates most of the kinetic energy of raindrops, weakening the erosion action;
- during heavy rainfalls, a major fraction of rainwater flows above the aerial portion of plants, even when the vegetation is dried up, thus reducing water infiltration;
- vegetation reduces the speed of runoff water on the ground.

Mechanical and hydraulic effects on slope equilibrium

The grass covering technique looks promising also with respect to shallow instability of slopes: the deep roots, in fact, induce mechanical and hydraulic effects on slope equilibrium that typically increase the shear strength of soil. The mechanical effects of plant roots result from the root/soil interaction processes, while the effects of hydraulic nature derive from the reduction of water content and degree of saturation of soil caused by the presence of grass. From a purely mechanical point of view, the roots provide an increase in shear strength of soil, $\Delta \tau_{rad}$, that, based on experimental tests, is directly proportional to the average tensile strength of roots T_R and to the rooting ratio A_R/A .

The Authors recently tackled a study aimed at numerical modeling of both mechanic and hydraulic interactions between roots and soil.

The results of the study, still to be refined, allow a quantitative estimation of the increase in soil shear strength induced by the roots system, and an evaluation of equilibrium and safety conditions for events of shallow instability. A numerical example showing the increase of the safety coefficient FS is plotted in Fig. 1 as a function of depth z from the ground table.

The results shown in Fig. 1 have been calculated for the following set of data (*roots*: $d_{min} = 0.8$ mm, $z_{rad} =$ 3 m from the ground table; *slope (infinite slope):* $\alpha =$ 25°, $D_w = 1$ m; *soil shear strength parameters:* f' =32°, c' = 4 kPa).

Fig. 1. Numerical example showing the mechanical effect of root reinforcement on the slope stability: shear strength increase vs depth (left); safety coefficient FS vs. depth (right).

Installation example of herbaceous plants with deep roots

A typical installation example of herbaceous plants with deep roots, aimed to erosion prevention and surface stabilization of slopes, was carried out in a site in central Italy, as shown in Fig 2. In December 2004, a remarkably high and steep slope (70-80°) consisting of pyroclastites and strongly altered basaltic outcrops developed a surface slide that blocked the underlying province road (Fig .2a). A few months after the intervention, the grass plants completely renaturalized the slope despite the unfavourable lithological and morphological conditions. Moreover, the deep root system was able to definitely stabilize the upper layer of the slope, blocking at the same time the erosion (see Fig. 2b).

Fig. 2. Example of intervention: Orvieto (Terni, Italy) – 'SP111 della Badia. a) front situation in December 2004, before intervention; b) after renaturalization intervention (May 2011).